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In the context of the problem of heat conduction in one-dimensional systems, we present an analytical
calculation of the instantaneous energy transfer across a tagged particle in a one-dimensional gas of equal-
mass, hard-point particles. From this, we obtain a formula for the steady-state energy flux, and identify and
separate the mechanical work and heat conduction contributions to it. The nature of the Fourier law for the
model, and the nonlinear dependence of the rate of mechanical work on the stationary drift velocity of the
tagged particle, are analyzed and elucidated.
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I. INTRODUCTION

Heat conduction in one-dimensional systems has evoked a
considerable amount of interest in recent years. In particular,
the validity or otherwise of the Fourier law of heat conduc-
tion in such systems is a nontrivial question, and hence one
that has been the subject of lively discussion �1�. A compre-
hensive account of the current status of the problem is pro-
vided in Ref. �2�.

Most of the results known in this regard are based on
numerical studies of lattice models. An alternative and useful
line of development is the analytical study of a model sys-
tem, albeit a simplified one, which we call the Jepsen gas: a
system of N identical classical point particles of mass m
moving on a line and undergoing perfectly elastic collisions
when neighboring particles meet �3�. This system is a special
case of the more general model investigated in the context of
the so-called adiabatic piston problem �4�, in which a central
heavy particle of mass M is in a gas of particles of mass m
on its left and right. The problem then is to analyze the
dynamics of the central particle in the thermodynamic limit
in which the one-dimensional gases to its left and right are in
thermal equilibrium at specified temperatures and densities.
The Jepsen gas is a singular limiting case of the unequal
mass situation. The latter is not integrable, in marked con-
trast to the case M =m, which is integrable. Notwithstanding
this simplification, nontrivial irreversible behavior is ob-
served in the Jepsen gas in the limit N→� when appropriate
averages over initial conditions are performed. In the initial
studies of this system �3,5�, several quantities of interest such
as the statistics of the displacement and velocity of one of the
particles, which we shall refer to as the central or tagged
particle �or “piston,” as it is the counterpart of the adiabatic
piston in the model at hand�, have been calculated exactly by
performing an average over equilibrium initial conditions for
the rest of the particles. In particular, it can be shown that the

motion of this tagged particle becomes diffusive asymptoti-
cally, i.e., converges to Brownian motion.

Recently, the model has been revisited and studied in
greater detail �6,7�, one of the motivating factors being its
relationship to the adiabatic piston problem. The nonequilib-
rium situation implied by different velocity distributions for
the gases to the left and right of the tagged particle has been
analyzed. In general, this particle acquires, in the thermody-
namic limit, a systematic drift velocity over and above its
diffusive motion. A notable feature is that this drift velocity
is exclusively fluctuation induced �6�. In the special case
when the velocity distributions of the gases on the two sides
are Maxwellian, so that the pressure of each gas can be iden-
tified with kB times the product of its �linear� number density
and temperature, an interesting feature emerges: even when
the pressures of the two gases are equal, the drift velocity of
the tagged particle does not vanish. Rather, it is directed
from the lower temperature �higher density� side to the
higher temperature �lower density� side. The drift velocity
vanishes when the product of the number density and the
square root of the temperature is the same on the two sides
of the tagged particle, a condition already recognized in Ref.
�3�. In physical terms, this condition amounts to the follow-
ing: If the tagged particle is replaced by a partition with a
hole, the condition for zero drift is that the rates of effusion
of the two gases through the hole into each other must be
equal.

In the context of heat conduction in one dimension, the
question that arises naturally is whether the heat flux can be
calculated for the Jepsen gas. We show in this paper that this
problem can be solved analytically: it is possible to calculate
exactly the amount of energy that is transferred through the
tagged particle or piston. At first, it would appear that the
issue is a trivial one in the same way as it is in a linear chain
of harmonic oscillators. In the latter system, the energy just
travels ballistically, being carried by phonon modes which do
not interact with each other. In a similar fashion, the kinetic
energy carried by any particle in the Jepsen gas is just trans-
ferred upon collision to the next particle, and hence moves
ballistically along the line. As a result, a Fourier law, which
predicts the diffusive spreading of thermal energy, does not
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appear to be valid. We will show by an exact and explicit
calculation that this “hand-waving” argument, while for-
mally correct, is nevertheless misleading in the sense that a
nontrivial energy flux is obtained in the model. A closed
expression can be derived for this quantity, comprising two
components. One of these involves the asymptotic drift ve-
locity of the tagged particle, while the other is present even
when the drift velocity vanishes. This permits the identifica-
tion, and hence a natural separation, of the “mechanical
work” and “heat” contributions, respectively, to the energy
transfer. In particular, for initial conditions corresponding to
thermal equilibrium of the gases to the left and right of the
tagged particle �with densities n− and n+ and temperatures T−

and T+, respectively� such that n−�T−=n+�T+, so that the
drift velocity is zero, the asymptotic steady-state energy flux
through the tagged particle is shown to converge to a con-
stant value. For small values of �T+−T−�, this quantity is
linearly proportional to the temperature difference itself.
Moreover, the mechanical work contribution itself is shown
to have a part that is linear in the drift velocity, as might be
expected, as well as a nonlinear part that starts �for small
drift velocities� with the fourth power of the drift velocity.

We reiterate the following point. The Jepsen gas is admit-
tedly a simplified special case of the more “realistic” models
of one-dimensional transport that have been the subject of
much attention. Nevertheless, it is the fact that analytical
�and hence unambiguous� results can be obtained for this
model that makes it worth studying, because these results
help shed light on several of the essential issues involved in
energy transport in one dimension.

The plan of the rest of this paper is as follows. In the next
section, we introduce the notation and summarize the salient
results pertaining to the Jepsen gas for the purpose at hand.
In Sec. III �and the Appendix�, an exact formula is derived
for the energy transfer across the piston at any instant of
time. This leads to a formula for the total energy flux in the
stationary state, which is obtained and analyzed in Sec. IV. In
Sec. V, the contribution to the energy flux coming from the
stationary heat flux is identified, and the nature of the Fourier
law for the model is clarified. The rate of mechanical work is
also deduced, and its nonlinear dependence on the stationary
drift velocity elucidated. Section VI contains a few conclud-
ing remarks.

II. NOTATION AND RECAPITULATION

It is helpful to recapitulate in brief the relevant features of
the model, in the notation used in earlier work �6,7�. The
tagged particle, located at X=0 at t=0 with an initial velocity
V0, separates a gas of N− particles in the interval �−L ,0� on
its left from a gas of N+ particles to its right, in �0,L�. Their
initial positions Xj �where −N−� j�−1 for the gas on the
left, and 1� j�N+ for the gas on the right� are indepen-
dently and uniformly distributed in the corresponding inter-
vals. Their initial velocities Vj are drawn from normalized
distributions �−�V� and �+�V�, respectively. To avoid unnec-
essary complications, we shall assume that these are sym-
metric distributions, i.e., �±�V�=�±�−V�. It can be shown
that the system has a thermodynamic limit in which N+

→�, L→� with finite densities lim N± /L=n±, provided only
that the mean speeds ��V��±=	−�

� dVV�±�V� are finite. Note
that �± need not be Maxwellian distributions, although this is
the case of direct interest in the present context of heat con-
duction. As all the particles �including the tagged particle�
have equal masses, they merely exchange their identities on
their original linear trajectories Xj�t�
Xj +Vjt in each colli-
sion. This is what enables one to derive exact results for the
system. Among other quantities, the exact one-particle distri-
bution function of the tagged particle, P�X ,V , t �0,V0�, can
be found. The complicated stochastic motion of the tagged
particle �henceforth termed the “piston”� can be interpreted
�7� as being driven by two independent Poisson processes
�corresponding to collisions from its left and right, respec-
tively� with state- and time-dependent intensities n−��X / t�
and n+��X / t�, where

��W� = �
W

�

dV�V − W��−�V� ,

��W� = �
−�

W

dV�W − V��+�V� . �1�

The system does not equilibrate in the conventional sense of
the term: the initial set of trajectories persists for all t. The

piston acquires an asymptotic mean drift velocity W̄ given by
the unique solution of the implicit equation �6�

n−��W̄� = n+��W̄� . �2�

The asymptotic velocity distribution of the piston is a super-
position of �+�V� and �−�V�, and is given by

Pst�V� = �n−�−�V���V − W̄� + n+�+�V���W̄ − V��/��W̄� ,

�3�

where

��W̄� = n−����W̄�� + n+���W̄�

= n−�
W̄

�

dV�−�V� + n+�
−�

W̄
dV�+�V� , �4�

is the normalization factor. Only in the special case of the
homogeneous system, defined by n−=n+=n and �+�V�
=�−�V�=��V�, can one have stationarity and an approach to

equilibrium, in the sense that W̄=0 and Pst�V�
��V�. Note

that W̄ may vanish even in the inhomogeneous system, if the
condition n−	0

�dVV�−�V�=n+	0
�dVV�+�V� �or n−��V��−

=n+��V��+� happens to be satisfied: that is, the mean rates at
which the piston suffers collisions from its left and right,
respectively, are equal.

We point out at this juncture that the stationary distribu-
tion Pst�V� in Eq. �3� may in fact be anticipated on physical
grounds, as follows. In the equal-mass case under consider-
ation, we may regard the particles as simply “passing
through” each other in each collision, because they are iden-
tical particles. In the stationary state, after the memory of the
initial velocity of the piston has been lost, it will only en-
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counter such particles via collisions from its left, as have the
velocities greater than its asymptotic mean drift velocity W*,
whatever that may be �trajectories corresponding to V	W*

from the gas on the left will never again intersect the piston’s
trajectory�. Similarly, the piston will encounter only those
particles from the gas on its right, as have the velocities less
than W*. Moreover, after each collision, the piston simply
acquires the velocity of the particle it collided with. Hence,
the stationary velocity distribution must necessarily be a su-
perposition of the form

Pst�V� 
 n−�−�V���V − W*� + n+�+�V���W* − V� , �5�

apart from a normalization factor. The latter is easily seen to
be just 1 /��W*�, where the function � is as given by Eq.
�4�. Taking the first moment of this equation, we find that
consistency demands that W* satisfy precisely the same im-
plicit equation �Eq. �2�� as that written above for the drift

velocity W̄. In other words, not only is the form in Eq. �3� for
Pst�V� deducible on direct physical grounds, but also the ex-

istence of an asymptotic drift velocity W̄ and the implicit
equation satisfied by it.

III. EXACT EXPRESSION FOR ENERGY TRANSFER

To derive an exact formula for the rate of transport of
energy across the piston, we first calculate the difference
�E�t�=E�t�−E�0�, where E�t� is the mean energy of the gas
on the left of the piston at time t, and E�0� is its initial value.

We have

E�0� =
1

2
m �

j=−N−

−1

�Vj
2� =

1

2
m �

j=−N−

N+

�Vj
2��− Xj�� , �6�

while

E�t� =
1

2
m�

a
�
j�a
Vj

2��Xa�t� − Xj�t���Kr�N−, �
��a

��Xa�t�

− X��t���� . �7�

Here, each sum runs over the entire set of particle labels
�−N− , . . . ,−1 ,0 ,1 , . . . ,N+�; the subscript a is used to distin-
guish the instantaneous variables of the piston from those of
the other particles; �Kr�n ,m� is the Kronecker delta �nm; and
�¯� denotes an average over the already-specified distribu-
tions of the initial conditions comprising the set �Xj ,Vj�. Us-
ing the crucial fact that

�
��a

��Xa�t� − X��t�� = N− �8�

for all t0, the gain in energy of the gas on the left at time
t can be written as

�E�t� = �
a

�
j�a
Vj

2���Xa�t� − Xj�t�� − ��− Xj��

��Kr�N−, �
��a

��Xa�t� − X��t���� . �9�

The representation �nm= �2�i�−1�zn−m−1dz enables us to
write this as

�E�t� =
1

2
m� dz

2�iz
�

a
�
j�a
Vj

2���Xa + Vat − Xj − Vjt�

− ��− Xj��

� zN− �
��a

�1 + �z−1 − 1���Xa + Vat − X� − V�t��� ,

�10�

where the contour encloses the origin. We break up �E�t� as

�E�t� = �E0�t� + �E−�t� + �E+�t� , �11�

corresponding to the three distinct contributions to �E�t�
coming, respectively, from the cases a=0, −N−�a�−1 and
1�a�N+. The calculation of these quantities is broadly
similar to, but a little more intricate than, that involved �5,7�
in evaluating quantities like the one-particle distribution
function P�X ,V , t �X0 ,V0� of the piston. An outline of the
main steps leading to the expression for �E�t� is given in the
Appendix. The exact result for �E�t� is given by Eqs.
�A8�–�A10�.

IV. FORMULA FOR THE STATIONARY ENERGY FLUX

To find the asymptotic or steady-state rate of transport of
energy across the piston, we pass to the long-time limit of the
expression for �E�t�. Using the asymptotic behavior Ir�z�
�ez / �2�z�1/2 as �z�→�, it is evident from Eq. �A8� that
�E0�t� decays exponentially to zero as t→�, unless it so
happens that n−��0�=n+��0�, i.e., the asymptotic drift veloc-
ity of the piston is zero. In that case �E0�t�� t1/2 at long
times; but, this again implies a rate of transport that vanishes
�like t−1/2� as t→�. Therefore, �E0�t� may be dropped from
further consideration.

Turning to Eqs. �A9� and �A10� for �E−�t� and �E+�t�,
we observe that the asymptotic behavior of the modified
Bessel functions leads to the occurrence of a factor
exp�−t��n−��w��1/2− �n+��w��1/2�2� in the integration over w
�which runs from −� to +��. Since the exponent has a

unique zero at precisely the asymptotic drift velocity W̄ as
defined in Eq. �2�, the long-time behavior of �E±�t� can be

deduced by a standard Gaussian approximation about w=W̄.
The leading asymptotic behavior of each of these two con-
tributions is then seen to be �t, implying the existence of a
finite, nonvanishing stationary rate of energy transfer

limt→�d�E�t� /dt, which we denote by �Ėst. Carrying out the
algebra required, our final result for this quantity is remark-
ably simple �for reasons to be explained shortly�. We find

ANALYTIC CALCULATION OF ENERGY TRANSFER AND… PHYSICAL REVIEW E 72, 046141 �2005�

046141-3



�Ėst =
1

2
m�n+�

−�

W̄
dUU2�W̄ − U��+�U� − n−

��
W̄

�

dUU2�U − W̄��−�U�� . �12�

For ready reference, we recall that the asymptotic drift ve-

locity W̄ of the piston is given by the implicit equation �2�,
which may be written in the alternative form

W̄ =

n−�
W̄

�

dUU�−�U� + n+�
−�

W̄
dUU�+�U�

n−�
W̄

�

dU�−�U� + n+�
−�

W̄
dU�+�U�

. �13�

We remark that the result in Eq. �12� is valid for arbitrary
initial velocity distributions �±�V�, and not just for Maxwell-
ian �± �see below�. It must also be noted that the existence of
the third moment of the speed, ��V�3�±, is necessary in order

that �Ėst be finite. The exact result in Eq. �12� has several
other noteworthy features that we take up in turn.

A. Physical interpretation

The formula in Eq. �12� can be given a direct physical
interpretation, extending the heuristic argument described in

Sec. II for Pst�V� and W̄: Once again, the fact that the par-
ticles merely exchange velocities upon colliding implies that
the mean stationary rate of energy transfer across the piston
can be constructed by an energy balance argument. If the

piston has a stationary drift velocity W̄, the trajectories be-
longing originally to the gas on its right that collide with it

are those corresponding to velocities from −� to W̄. The
energy carried by �a particle on� each such trajectory is
1
2mU2. The rate of collisions of such trajectories with that of

the piston is n+�W̄−U�, the second factor being the relative
velocity between the two. Therefore

mn+

2
�

−�

W̄
dUU2�W̄ − U��+�U� , �14�

is the mean rate at which energy is transferred to the piston
by the gas on its right, in the stationary state. Exactly the
same argument shows that

mn−

2
�

W̄

�

dUU2�U − W̄��−�U� , �15�

is the mean rate at which the gas on the left transfers energy
to the piston. The difference between the two is precisely the
formula of Eq. �12� for the mean stationary rate of transfer of
energy from the right to the left across the piston. Our rigor-
ous derivation serves to corroborate this physical argument,
in addition to providing an exact result for the time-
dependent transients as well.

B. Dichotomous and three-valued velocity distributions

The dichotomous velocity distribution

�+�V� = �−�V� = ��V� = 1
2 ���V + c� + ��V − c�� , �16�

yields, as always, a simple and tractable special case that
serves as a useful check on the calculations. We have, in this

case, W̄=c�n−−n+� / �n−+n+�. Evaluating the various quanti-

ties appearing in Eq. �12�, we find that �Ėst vanishes identi-
cally for the dichotomous distribution above. However, valu-

able insight into the structure of the result for �Ėst is
provided by a slight generalization of the dichotomous dis-
tribution of Eq. �16� to the distribution

�+�V� = �−�V� = ��V�

= ���V� + 1
2 �1 − �����V + c� + ��V − c�� , �17�

where 0	�	1. It has been shown in Ref. �7� that the in-
troduction of a nonvanishing probability mass � at V=0 sig-
nificantly alters the long-time properties of the homogeneous
system. For instance, the velocity autocorrelation function
acquires a t−3/2 tail, in contrast to its exponential decay in the
case of a dichotomous ��V�. In the present context, too, a
nonvanishing value of � leads to a strikingly different result

for �Ėst. We have in this instance

W̄ =
c�1 − ���n− − n+�

�1 − ��n� + �1 + ��n	

, �18�

where n�=max�n− ,n+� and n	=min�n− ,n+�. Computing the
various quantities occurring in Eq. �12�, we arrive at the
result

�Ėst =
mc3

2

��1 − ��n−�n+ − n−�
�1 − ��n� + �1 + ��n	

. �19�

Thus, �Ėst vanishes identically if n+=n−=n �which, together
with �+=�− as already imposed by Eq. �17�, implies a ho-
mogeneous system�, as it must in the homogeneous system.

Similarly, �Ėst vanishes when �=0 �the case of a dichoto-
mous �±�V��, or when �=1 �the trivial case of no motion at
all�. Comparing the expressions in Eqs. �18� and �19�, we

observe that �Ėst can be written in this case in the revealing
form

�Ėst = 1
2mc2�n−�− W̄� . �20�

�Recall that we have defined �Ė as the rate of transfer of

energy to the gas on the left of the piston, and that W̄ is
negative if n+�n−, i.e., if the piston drifts to the left.�

C. The case of Maxwellian distributions

The situation that is of direct physical interest is of course
that of Maxwellian velocity distributions �±�V� characterized
by temperatures T±. For arbitrary densities n+ and n−, the

asymptotic drift velocity W̄ is still given by the solution of a
transcendental equation, which reads in this case
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W̄ =
n−�2kBT−/m��1/2e−mW̄2/2kBT−

− n+�2kBT+/m��1/2e−mW̄2/2kBT+

n−�1 − erf�mW̄2/2kBT−�1/2� + n+�1 + erf�mW̄2/2kBT+�1/2�
. �21�

In terms of n±, T±, and W̄ as given above, we get

�Ėst = �2�m�−1/2�n+�kBT+�3/2e−mW̄2/2kBT+

− n−�kBT−�3/2e−mW̄2/2kBT−
�

+ 1
4W̄�n+�mW̄2 + kBT+��1 + erf�mW̄2/2kBT+�1/2�

+ n−�mW̄2 + kBT−��1 − erf�mW̄2/2kBT−�1/2�� . �22�

The nonlinear dependence of �Ėst on W̄ is explicit in this
formula. We shall comment further on this subsequently. It is

also clear that �Ėst is not proportional to the temperature
difference �T+−T−�, though one might perhaps naively ex-
pect such a proportionality based on an incorrect identifica-

tion of �Ėst with the heat flux, together with an application
of the Fourier law to the system under discussion.

D. Mechanical work and heat contributions

This brings us, finally, to a very important point. The gen-

eral expression obtained in Eq. �12� for �Ėst incorporates the
effects �on the energy transfer rate� of both the drift of the
piston and its diffusive motion �or fluctuations about its mean

position, namely, about W̄t�. In broad terms, one might re-
gard the respective contributions as the rate of mechanical

work done upon the gas on the left of the piston �W̄ being the

rate of compression or expansion, depending on whether W̄

	0 or W̄�0�, and the rate at which its entropy changes.
However, these contributions are intricately mixed up in the

formula for �Ėst. Moreover, the dependence of �Ėst upon W̄
is in general highly nonlinear. Disentangling these contribu-

tions will enable us, in principle, to isolate the parts of �Ėst

that may be identified with the “heat flux” �Q̇st and the “rate
of mechanical work,” respectively. In some cases, the former
may vanish altogether—as in the example of the distribution
considered in Eq. �17�, for which Eq. �20� shows clearly that

�Ėst arises entirely from the drift of the piston. In general,
however, such a clear separation does not occur in the system
under study. It is also important to bear in mind the fact that

a nonvanishing drift velocity W̄ is itself a consequence of the
statistics of collisions in the system under consideration �6�.

V. STATIONARY HEAT FLUX

A direct way to isolate and examine the heat flux is to

impose the condition of zero drift �W̄=0� by adjusting, for
instance, the value of the ratio n− /n+ of the densities of the
two gases. As we shall now see, this leads to considerable

simplification in the formula for �Ėst, which we are now

justified in relabeling as �Q̇st.
As emphasized more than once, the asymptotic drift ve-

locity W̄ of the piston vanishes if the densities n± and initial
velocity distributions �± are related by the condition
n−��0�=n+��0�, or n−��V��−=n+��V��+, i.e., the mean rates at
which the piston suffers collisions from the gases on either
side of it are equal. The motion of the piston is then purely
diffusive in the long-time limit, with a variance �X2�t�� that
tends asymptotically to 2Dt, where the diffusion coefficient
is given by �7,8�

D = 2n−��V��−/�n− + n+�2. �23�

We note that the homogeneous system �defined by n−=n+,

�−=�+� automatically has W̄=0. The converse is not neces-

sarily true, of course: W̄=0 does not necessarily imply a
homogeneous system. Recall also that we have already con-
sidered situations in which �+�V�=�−�V�=��V�, but n+

�n−; we then have an inhomogeneous system in which,

moreover, W̄�0.

Setting W̄=0 in Eq. �12�, we find that the stationary en-
ergy flux in the absence of drift is simply

�Q̇st = 1
4m�n+��V�3�+ − n−��V�3�−� , �24�

in terms of the third moments

��V�3�± = 2�
0

�

dUU3�±�U� , �25�

of the particle speed in the two gases. For the homogeneous

system, of course, �Q̇st vanishes identically, as it must.
Turning again to the case of Maxwellian distributions

�±�V� at temperatures T±, the drift velocity W̄ vanishes, as is
well known, if n−�T−=n+�T+. Equation �22� then reduces to

�Q̇st = n+� kBT+

2�m
�1/2

kB�T+ − T−� . �26�

We see that the heat flux is indeed given by the Fourier law
in this case, with a “coefficient of thermal conductivity” that
is proportional to the square root of the temperature.

It is revealing and instructive to pause at this stage to
compare the result in Eq. �26� with that for the heat flux
between two reservoirs held at different temperatures and
densities, coupled by virtue of their sharing a common piston
�9�. When the mass of the latter is equal to that of the gas
particles, the Boltzmann equation can be solved exactly for
the stationary distribution; concomitantly, the heat flux con-
veyed via the shared piston from one reservoir to the other
can also be calculated. While the exact expression for this
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quantity �see Ref. �9�� is slightly more complicated than that
of Eq. �26� above, it reduces to the latter result to leading
order in the temperature difference �T+−T−�, apart from an
extra numerical factor � /�2. This lends additional support to
our identification of the portion of the energy flux that cor-
responds to the heat flux. The fact that the heat flux is about
twice as large in the case of the shared piston is readily
understood by recalling that the piston now suffers collisions
with the gas particles belonging to both reservoirs, so that the
effective rate of collisions is roughly twice as large. For a
detailed discussion of the relevance of the problem of the
shared piston to the general questions addressed here, we
refer to Ref. �9�.

Finally, let us return to the full expression for the station-

ary energy flux �Ėst in Eq. �12�, and analyze its dependence

on the drift velocity W̄. For sufficiently small W̄, we may

expand �Ėst in powers of W̄, taking care to incorporate the

fact that W̄=0 imposes the condition n−��V��−=n+��V��+ on
the parameters occurring in the coefficients of the expansion.
�This has been done in the Maxwellian case, Eq. �26� above,
to reduce n+�T+�3/2−n−�T−�3/2 to n+�T+�1/2�T+−T−�.� For dis-
tributions �±�V� that have derivatives of all orders at V=0,

the formal expansion in powers of W̄ is given by

�Ėst = �Q̇st +
mW̄

4
�n+�V2�+ + n−�V2�−�

+
mW̄4

2 �
k=0

�
W̄k��k��0�

�k + 3��k + 4�k!
, �27�

where

��V� = n+�+�V� − n−�−�V� , �28�

��k� denotes its kth derivative, and �Q̇st is given by Eq. �24�.
This representation isolates the contribution to �Ėst owing to
the systematic drift of the piston from that arising from the
fluctuations about its mean position. We observe that the part

that is nonlinear in W̄ is O�W̄4�. Considering the Maxwellian
case once again, we find

�Ėst � � kBT+

2�m
�1/2

n+kB�T+ − T−� + � kBT+T−

8�m
�1/2

kB�n−�T−

− n+�T+� , �29�

correct to first order in the difference �n−�T−−n+�T+�, the
next term being of fourth order in this quantity. In contrast to

the relatively simple expression to which �Ėst reduces when
n−�T−=n+�T+ �Eq. �26��, no significant simplification of the
general expression in Eq. �22� occurs when n−T−=n+T+

�equal pressures on either side of the piston�. Some simpli-
fication does occur, however, when the temperatures on the
two sides are equal, T+=T−=T �but n+�n−�. We find that the
drift velocity is now given by the implicit equation

W̄ = �n− − n+

n− + n+���2kBT

m�
�1/2

e−mW̄2/2kBT

+ W̄ erf�mW̄2/2kBT�1/2� . �30�

The corresponding stationary energy flux is found to be

�Ėst = �n− − n+��mkBT

8�
�1/2�W̄2 −

kBT

m
�e−mW̄2/2kBT. �31�

Written in terms of the moments of the �Maxwellian� veloc-
ity distribution, this is just

�Ėst = 1
4m�W̄ − �V2���n− − n+���V��e−mW̄2/2kBT. �32�

Finally, if the two densities are equal �n+=n−=n, but T+

�T−�, we find that W̄ becomes independent of n, and �Ėst is
directly proportional to n.

VI. CONCLUDING REMARKS

We have already commented at the appropriate junctures
on the special and interesting features of the structure of our
analytical result for the stationary rate of energy transfer, as
given by Eqs. �12� and �27�. An additional comment on the
question of the finiteness or otherwise of the heat conductiv-
ity of the system under study �1,2� is in order here. It may be
argued that the coefficient of heat conductivity of our system
is essentially infinite: The contention is that in the expression
for the heat flux, the conductivity is the coefficient of the
gradient of the temperature, and the latter is 
�T+−T−� /L.
This gradient tends to zero in the thermodynamic limit, al-
though a finite energy flux persists in the long-time limit.
Hence, the coefficient multiplying the gradient has to di-
verge. Indeed, it is well known that, both in the present
model and in that of a linear chain of harmonic oscillators,
the thermal conductivity of the corresponding finite system
simply scales like the system size L itself.

While we agree with this argument, we point out that the
system can be viewed in a different way: the gases on the left
and right of the piston are heat reservoirs which have a single
microscopic degree of contact, namely, the tagged particle
we have termed the piston. There is no relevant length scale
in the problem, so the heat flux is expected to appear solely
as a result of this thermal contact. The fact that the Boltz-
mann calculation gives a comparable value for the conduc-
tivity supports the meaningfulness of our result. Further-
more, one can construct a physical system that will display
exactly the behavior predicted by our model calculation.
Consider a two- or three-dimensional cylinder of axial length
2L with a central piston that can move without friction along
the axis of the cylinder. The compartments to its left and
right are filled with gases in equilibrium, at respective den-
sities and temperatures n± ,T±. In the limit of low densities
and L→�, the dynamics of the piston will be exactly as
described by the one-dimensional model: in the physical
setup, the particles only interact with the piston, while in our
one-dimensional model, they exchange velocities upon colli-
sion, which is effectively tantamount to their passing through
each other without interaction.
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To sum up and to put our results in perspective: We have
presented an exact analytic calculation showing that the
equal-mass hard-point gas in one dimension, while enjoying
the property of integrability for finite N and L, nevertheless
does have nontrivial properties in the thermodynamic limit,
such as a stationary energy flux. As a singular limiting case
of the unequal-mass problem �in which the tagged particle
has a different mass M�, this model is of interest in its own
right, besides being complementary to studies in which M
�m. �The scaling exponent of the thermal conductivity with
the system size is of central interest in this case.� The latter
rely ultimately on perturbation expansions in the small pa-
rameter m /M. Such expansions are invariably divergent
when m /M =1, which is why it is of value to have an inde-
pendent exact solution for this case. Further, the equal-mass
model is one of the very small number of cases in which,
starting from an integrable Hamiltonian system, the emer-
gence of irreversible behavior in the thermodynamic limit
can be established rigorously. Not only does the motion of
any particle in the system tend to Brownian motion in this
limit �with a diffusion coefficient that is explicitly deter-
mined�, but there is also a stationary rate of energy transfer,
notwithstanding the fact that this system does not equilibrate
in the conventional sense. Owing to these interesting proper-
ties, the system serves as a valuable theoretical laboratory for
investigating the numerous deep �and as yet incompletely
understood� connections between dynamical systems and
statistical mechanics.
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APPENDIX: CALCULATION OF �E„t…

As stated in the main text, we write Eq. �10� for �E�t� as
the sum �E0�t�+�E−�t�+�E+�t� of contributions coming, re-
spectively, from the possibilities that at time t, the piston is
�i� on its original trajectory, so that a=0, or �ii� on a trajec-
tory belonging to the gas on its left, so that −N−�a�−1, or
�iii� on a trajectory belonging to the gas on its right, so that
1�a�N+. Consider �E0 first. We have in this case X0=0,
V0=0. We find

�E0�t� = m� dz

4�iz
�
j�0

�Vj
2���− Xj − Vjt� − ��− Xj���

� �
�−

�z + �1 − z����− X� − V�t���

��
��+

�1 + �z−1 − 1����− X�� − V��t��� , �A1�

where the symbols �− and ��+ are used to denote the fact
that � and �� run over −N−���−1 and 1����N+, respec-
tively, in the products concerned. We shall use the conve-
nient notation �¯� j

± for the corresponding averages. The

evaluation of the contributions �E±�t� is somewhat more in-
volved. We get

�E−�t� = m� dz

4�iz
N−���N− − 1��Vj

2���Xa + Vat − Xj − Vjt�

− ��− Xj��� j
− + N+�Vj

2���Xa + Vat − Xj − Vjt�

− ��− Xj��� j
+� � �z + �1 − z����Xa + Vat − X�

− V�t���
−�N−−1�z + �1 − z���Xa + Vat�� � �1 + �z−1 − 1�

����Xa + Vat − X�� − V��t����
+ �N+

�a
−, �A2�

while

�E+�t� = m� dz

4�iz
N+��N−�Vj

2���Xa + Vat − Xj − Vjt�

− ��− Xj��� j
− + �N+ − 1��Vj

2���Xa + Vat − Xj − Vjt�

− ��− Xj��� j
+� � �z + �1 − z����Xa + Vat − X�

− V�t���
−�N−

�1 + �z−1 − 1���Xa + Vat�� � �1 + �z−1

− 1����Xa + Vat − X�� − V��t����
+ �N+−1�a

+. �A3�

Evaluating the averages required, we get, for instance

�Vj
2���− Xj − Vjt� − ��− Xj��� j

− = − �
L/t

�

dUU2�−�U�

− �t/L��
0

L/t

dUU3�−�U� ,

�Vj
2���− Xj − Vjt� − ��− Xj��� j

+ = �
−�

−L/t

dUU2�+�U�

− �t/L��
−L/t

0

dUU3�+�U� ,

���− X� − V�t���
− = �

−�

L/t

dU�−�U� − �t/L��
0

L/t

dUU�−�U� ,

���− X�� − V��t����
+ = �

−�

−L/t

dU�+�U� − �t/L��
−L/t

0

dUU�+�U� .

�A4�

The other averages are similarly calculated. Inserting all
these results in Eqs. �A1�–�A3�, we pass to the thermody-
namic limit N±→�, L→�, such that lim N± /L=n±. Using
the well-known expression for the generating function of the
modified Bessel function Ir�z�, the final expressions are as
follows:

Recall the definitions of the rates ��w� and ��w� in Eq.
�1�, and let

�−�w;n−� = n−��w�, �+�w;n+� = n+��w� . �A5�

Define the effective rates
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��w;n−,n+� = ��−�+�1/2, ��w;n−,n+� = �− + �+. �A6�

Further, let

F�w;n−,n+� = n−�
w

�

dUU2�w − U��−�U�

+ n+�
−�

w

dUU2�w − U��+�U� . �A7�

Then, suppressing the n± dependence in � and � for nota-
tional simplicity, we find

�E0�t� = 1
2mte−��0�tI0„2��0�t…F�0;n−,n+� , �A8�

�E−�t� = 1
2mn−t2�

−�

�

dwe−��w�t����w��F�w;n−,n+�

� ���w�I0„2��w�t… + ��− w�

���+�w�/�−�w��1/2I1„2��w�t…� , �A9�

�E+�t� = 1
2mn+t2�

−�

�

dwe−��w�t���w�F�w;n−,n+�

� ���− w�I0„2��w�t…

+ ��w���−�w�/�+�w��1/2I1„2��w�t…� . �A10�

�E�t� is the sum of the right-hand sides of Eqs. �A8�–�A10�.
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